Plant Tissues in 3D via X-Ray Tomography: Simple Contrasting Methods Allow High Resolution Imaging

نویسندگان

  • Yannick M. Staedler
  • David Masson
  • Jürg Schönenberger
چکیده

Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei) via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of research to be undertaken in areas ranging from morphology to systems biology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Small Animal Computed Tomography Imaging for in vitro and in vivo Studies

Introduction: Mini Computed Tomography (mini-CT) was suggested in biomedical research to investigate tissues and small animals. We present designed and built a mini x-ray computed tomography (mini-CT) for small animals as well as industrial component imaging. Materials and Methods: The system used in this study includes a X-ray tube 20kV to 160kV and a flat pa...

متن کامل

X-ray microtomographic imaging of three-dimensional structure of soft tissues.

We report the x-ray microtomographic imaging of three-dimensional (3D) structure of soft tissues. The transparency of biological tissue to hard x-rays enables radiographic analysis of tissue entrails. However, biological tissues are mainly composed of light elements, which produce little contrast in a hard x-ray transmission image. Tissue structures were visualized by contrasting biological con...

متن کامل

X-ray microtomography in biology.

Progress in high-resolution X-ray microtomography has provided us with a practical approach to determining three-dimensional (3D) structures of opaque samples at micrometer to submicrometer resolution. In this review, we give an introduction to hard X-ray microtomography and its application to the visualization of 3D structures of biological soft tissues. Practical aspects of sample preparation...

متن کامل

Using high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature.

High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D) (e.g. Brodersen et al. 2010; 2011; 2012a,b). HRCT imaging is based on the same principles as medical CT systems, but a high intensity synchrotron x-ra...

متن کامل

3D Watershed Transform Combined with a Probabilistic Atlas for Medical Image Segmentation

Recent advances in medical imaging technology using multiple detector-row computed tomography (CT) provide volumetric datasets with unprecedented spatial resolution. This has allowed for CT to evolve into an excellent non-invasive vascular imaging technology, commonly referred to as CT-angiography. Visualization of vascular structures from CT datasets is demanding, however, and identification o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013